Cutoff for General Spin Systems with Arbitrary Boundary Conditions

نویسندگان

  • EYAL LUBETZKY
  • ALLAN SLY
چکیده

The cutoff phenomenon describes a sharp transition in the convergence of a Markov chain to equilibrium. In recent work, the authors established cutoff and its location for the stochastic Ising model on the d-dimensional torus (Z/nZ) for any d ≥ 1. The proof used the symmetric structure of the torus and monotonicity in an essential way. Here we enhance the framework and extend it to general geometries, boundary conditions and external fields to derive a cutoff criterion that involves the growth rate of balls and the log-Sobolev constant of the Glauber dynamics. In particular, we show there is cutoff for stochastic Ising on any sequence of bounded-degree graphs with sub-exponential growth under arbitrary external fields provided the inverse log-Sobolev constant is bounded. For lattices with homogenous boundary, such as all-plus, we identify the cutoff location explicitly in terms of spectral gaps of infinite-volume dynamics on half-plane intersections. Analogous results establishing cutoff are obtained for non-monotone spin-systems at high temperatures, including the gas hard-core model, the Potts model, the anti-ferromagnetic Potts model and the coloring model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bending Analysis of Laminated Composite Plates with Arbitrary Boundary Conditions

It is well known that for laminated composite plates a Levy-type solution exists only for cross-ply and antisymmetric angle-ply laminates. Numerous investigators have used the Levy method to solve the governing equations of various equivalent single-layer plate theories. It is the intension of the present study to introduce a method for analytical solutions of laminated composite plates with ar...

متن کامل

General boundary conditions for quasiclassical theory of superconductivity in the diffusive limit: application to strongly spin-polarized systems

Boundary conditions in quasiclassical theory of superconductivity are of crucial importance for describing proximity effects in heterostructures between differentmaterials. Although they have been derived for the ballistic case in full generality, corresponding boundary conditions for the diffusive limit, described byUsadel theory, have been lacking for interfaces involving strongly spin-polari...

متن کامل

Ritz Method Application to Bending, Buckling and Vibration Analyses of Timoshenko Beams via Nonlocal Elasticity

Bending, buckling and vibration behaviors of nonlocal Timoshenko beams are investigated in this research using a variational approach. At first, the governing equations of the nonlocal Timoshenko beams are obtained, and then the weak form of these equations is outlined in this paper. The Ritz technique is selected to investigate the behavior of nonlocal beams with arbitrary boundary conditions ...

متن کامل

Cutoff for the Ising Model on the Lattice

Introduced in 1963, Glauber dynamics is one of the most practiced and extensively studied methods for sampling the Ising model on lattices. It is well known that at high temperatures, the time it takes this chain to mix in L on a system of size n is O(logn). Whether in this regime there is cutoff, i.e. a sharp transition in the L-convergence to equilibrium, is a fundamental open problem: If so,...

متن کامل

Cluster algorithms for general-S quantum spin systems.

We present a general strategy to extend quantum cluster algorithms for S = 1 / 2 spin systems, such as the loop algorithm, to those with an arbitrary size of spins. The partition function of a high- S spin system is generally represented by the path integral of a S = 1 / 2 model with special boundary conditions in the imaginary-time direction. We introduce additional graphs for the boundary par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012